Structural Biology of Proline Catabolic Enzymes.
نویسنده
چکیده
SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, aka ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors. Antioxid. Redox Signal. 00, 000-000.
منابع مشابه
Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation.
In Salmonella typhimurium the two enzymes of proline catabolism, proline oxidase and Delta(1)-pyrroline-5-carboxylic acid dehydrogenase, are subject to catabolite repression when the cells are grown in the presence of glucose. Mutants partially relieved of catabolite repression (PutR) for the proline catabolic enzymes have been isolated by selection on agar plates containing glucose and proline...
متن کاملPrediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine
UNLABELLED Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metab...
متن کاملDifferential Changes of Proline Content and Activities of Antioxidant Enzymes Results in Varied Salt-Tolerance in Canola Genotypes
Saline soils and saline irrigation waters present potential hazards to canola production. Therefore, in this study in order to find indicators for salt tolerance, the changes of proline content and the activities of antioxidant enzymes were investigated in two canola genotypes (H308, H420) under various salt concentrations (0, 50, 100, 150 and 200 mM). Results showed that compared to the contr...
متن کاملInteraction of polyamine and proline on the activity of enzymatic and non-enzymatic compounds in the peel of three Citrus species under low temperature stress
Plants activate antioxidant defense mechanisms under stress, which help maintaining the structural integrity of cell components and possibly reduces oxidative damage. Low temperature stress leads to the production of reactive oxygen species and oxidative damage to plants. In this study, the effect of putrescine and proline on reducing the production of reactive oxygen species and increasing th...
متن کاملProline biosynthesis by cell-free extracts of Escherichia coli and potential errors arising from the use of a bioradiological assay procedure.
1. The growth of Escherichia coli proline auxotrophs on medium containing L-proline (50 microgram/ml) induces catabolic enzymes. A bioradiological assay system for proline, using proB cells of E. coli, might give erroneous results owing to proline catabolism by the proline auxotrophs on which the assay depends. 2. Differential utilization of proline and 1-pyrroline-5-carboxylate by the proB cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antioxidants & redox signaling
دوره شماره
صفحات -
تاریخ انتشار 2017